МЕРЫ ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ (CENTRAL TENDENCY MEASURES)

Назначение М. ц. т. — служить сводными количественными характеристиками, обеспечивающими наилучшее описание множества наблюдений или оценок одним единственным числом. Термины М. ц. т. и «средняя величина» часто употребляются как равнозначные, хотя некоторые авторы сужают объем понятия «средняя величина» до среднего арифметического. Несмотря на разнообразие М. ц. т., чаще всего встречаются мода, медиана и среднее.

Мода — это просто наиболее часто встречающееся в определенной совокупности наблюдений значение переменной. При сгруппированных данных мода определяется как середина интервала группирования, содержащего наибольшее число значений наблюдаемой переменной.

Медиана — это значение переменной, делящее упорядоченную совокупность наблюдений пополам, так что одна половина значений в этой совокупности лежит ниже медианы, а др. их половина — выше медианы. Если совокупность образована нечетным числом значений наблюдаемой переменной, то медиана равна значению переменной, являющемуся серединой упорядоченной совокупности наблюдений. Если же совокупность образована четным числом значений, то медиана определяется значением, лежащим посередине между двумя значениями, находящимися в центре упорядоченной совокупности наблюдений. Медиана — более полезная мера, чем мода, и часто используется в случае скошенного (асимметричного) распределения данных. Следует, однако, отметить, что медиана нечувствительна к величине крайних значений упорядоченной совокупности наблюдений.

Среднее арифметическое — самая распространенная мера центральной тенденции — определяется как сумма значений наблюдаемой переменной, разделенная на их число. (В данной статье под «средним» подразумевается среднее арифметическое.) Использование среднего дает исследователю ряд преимуществ. В отличие от др. М. ц. т., среднее чувствительно к точному положению каждого значения в распределении переменной. Правда, это достоинство среднего арифметического оборачивается недостатком в виде повышенной чувствительности к крайним значениям переменной, и потому его иногда избегают использовать в случае сильно скошенных распределений.

Среднее — особенно полезная мера в области статистических выводов, поскольку выборочное среднее является относительно эффективной оценкой генерального среднего. Если из генеральной совокупности значений наблюдаемой переменной случайно извлечь даже большое количество выборок, не следует ожидать точного равенства выборочных средних между собой или генеральному среднему. Однако, можно доказать, что выборочные средние отклоняются от генерального среднего меньше, чем выборочные медианы отклоняются от медианы генеральной совокупности. Можно также доказать (центральная предельная теорема), что выборочное распределение среднего приближается к нормальному распределению по мере увеличения объема выборки.

См. также Статистика в психологии

А. Велл

Январь 24, 2019 Общая психология, психология личности, история психологии
Еще по теме
ЦЕНТРАЛЬНЫЕ ЧЕРТЫ (CENTRAL TRAITS)
ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (CENTRAL NERVOUS SYSTEM)
ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА (CENTRAL LIMIT THEOREM)
МЕРЫ ЧИТАЕМОСТИ (READING MEASURES)
МЕРЫ КРИТЕРИЯ (CRITERION MEASURES)
МЕРЫ ИНТЕЛЛЕКТА (INTELLIGENCE MEASURES)
МЕРЫ КРЕАТИВНОСТИ (CREATIVITY MEASURES)
МЕРЫ РЕЧИ И СЛУХА (SPEECH AND HEARING MEASURES)
НЕЗАМЕТНЫЕ ИЗМЕРЕНИЯ (UNOBTRUSIVE MEASURES)
РАССТРОЙСТВА ПСИХИКИ И ПОВЕДЕНИЯ ПРИ ПОРАЖЕНИЯХ ЦНС (CENTRAL NERVOUS SYSTEM DISORDERS)
СРЕДСТВА ОЦЕНКИ ЖИЗНЕННОЙ СРЕДЫ (ENVIRONMENTAL MEASURES)
ЦЕНТРАЛЬНАЯ ГИПОТЕЗА.
ОСТРОТА ЗРЕНИЯ ЦЕНТРАЛЬНОЙ ЯМКИ
Добавить комментарий