ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Этот раздел содержит полные доказательства всех рассматриваемых утверждений.

События и вероятности. Исходное понятие при построении вероятностных моделей в задачах принятия решений – опыт (испытание). Примерами опытов являются проверка качества единицы продукции, бросание трех монет независимо друг от друга и т.д.

Первый шаг при построении вероятностной модели реального явления или процесса – выделение возможных исходов опыта. Их называют элементарными событиями. Обычно считают, что в первом опыте возможны два исхода – «единица продукции годная» и «единица продукции дефектная». Естественно принять, что при бросании монеты осуществляется одно из двух элементарных событий – «выпала решетка (цифра)» и «выпал герб». Таким образом, случаи «монета встала на ребро» или «монету не удалось найти» считаем невозможными.

При бросании трех монет элементарных событий значительно больше. Вот одно из них – «первая монета выпала гербом, вторая – решеткой, третья – снова гербом». Перечислим все элементарные события в этом опыте. Для этого обозначим выпадение герба буквой Г, а решетки – буквой Р. Имеется 23=8 элементарных событий: ГГГ, ГГР, ГРГ, ГРР, РГГ, РГР, РРГ, РРР – в каждой тройке символов первый показывает результат бросания первой модели, второй – второй монеты, третий – третьей монеты.

Совокупность всех возможных исходов опыта, т.е. всех элементарных событий, называется пространством элементарных событий. Вначале мы ограничимся пространством элементарных событий, состоящим из конечного числа элементов.

С математической точки зрения пространство (совокупность) всех элементарных событий, возможных в опыте – это некоторое множество, а элементарные события – его элементы. Однако в теории вероятностей для обозначения используемых понятий по традиции используются свои термины, отличающиеся от терминов теории множеств. В табл. 1 установлено соответствие между терминологическими рядами этих двух математических дисциплин.

Таблица 1.

Соответствие терминов теории вероятностей и теории множеств

Теория вероятностей Теория множеств
Пространство элементарных событий Множество
Элементарное событие Элемент этого множества
Событие Подмножество
Достоверное событие Подмножество, совпадающее с множеством
Невозможное событие Пустое подмножество
Сумма А+В событий А и В Объединение
Произведение АВ событий А и В Пересечение
Событие, противоположное А Дополнение А
События А и В несовместны пусто
События А и В совместны не пусто

Как сложились два параллельных терминологических ряда? Основные понятия теории вероятностей и ее терминология сформировались в XVII-XVIII вв. Теория множеств возникла в конце XIX в. независимо от теории вероятностей и получила распространение в ХХ в.

Принятый в настоящее время аксиоматический подход к теории вероятностей, разработанный академиком АН СССР А.Н. Колмогоровым (1903-1987), дал возможность развивать эту дисциплину на базе теории множеств и теории меры. Этот подход позволил рассматривать теорию вероятностей и математическую статистику как часть математики, проводить рассуждения на математическом уровне строгости. В частности, было введено четкое различие между частотой и вероятностью, случайная величина стала рассматриваться как функция от элементарного исхода, и т.д. За основу методов статистического анализа данных стало возможным брать вероятностно-статистические модели, сформулированные в математических терминах. В результате удалось четко отделить строгие утверждения от обсуждения философских вопросов случайности, преодолеть подход на основе понятия равновозможности, имеющий ограниченное практическое значение. Наиболее существенно, что после работ А.Н.Колмогорова нет необходимости связывать вероятности тех или иных событий с пределами частот. Так называемые «субъективные вероятности» получили смысл экспертных оценок вероятностей.

После выхода (в 1933 г. на немецком языке и в 1936 г. – на русском) основополагающей монографии аксиоматический подход к теории вероятностей стал общепринятым в научных исследованиях в этой области. Во многом перестроилось преподавание. Повысился научный уровень многих прикладных работ. Однако традиционный подход оказался живучим. Распространены устаревшие и во многом неверные представления о теории вероятностей и математической статистике. Поэтому в настоящей главе рассматриваем основные понятия, подходы, идеи, методы и результаты в этих областях, необходимые для их квалифицированного применения в задачах принятия решений.

В послевоенные годы А.Н.Колмогоров формализовал понятие случайности на основе теории информации. Грубо говоря, числовая последовательность является случайной, если ее нельзя заметно сжать без потери информации. Однако этот подход не был предназначен для использования в прикладных работах и преподавании. Он представляет собой важное методологическое и теоретическое продвижение.

Перейдем к основному понятию теории вероятностей – понятию вероятности события. В методологических терминах можно сказать, что вероятность события является мерой возможности осуществления события. В ряде случаев естественно считать, что вероятность события А – это число, к которому приближается отношение количества осуществлений события А к общему числу всех опытов (т.е. частота осуществления события А) – при увеличении числа опытов, проводящихся независимо друг от друга. Иногда можно предсказать это число из соображений равновозможности. Так, при бросании симметричной монеты и герб, и решетка имеют одинаковые шансы оказаться сверху, а именно, 1 шанс из 2, а потому вероятности выпадения герба и решетки равны 1/2.

Однако этих соображений недостаточно для развития теории. Методологическое определение не дает численных значений. Не все вероятности можно оценивать как пределы частот, и неясно, сколько опытов надо брать. На основе идеи равновозможности можно решить ряд задач, но в большинстве практических ситуаций применить ее нельзя. Например, для оценки вероятности дефектности единицы продукции. Поэтому перейдем к определениям в рамках аксиоматического подхода на базе математической модели, предложенной А.Н.Колмогоровым (1933).

Определение 1. Пусть конечное множество

является пространством элементарных событий, соответствующим некоторому опыту. Пусть каждому

поставлено в соответствие неотрицательное число

, называемое вероятностью элементарного события

, причем сумма вероятностей всех элементарных событий равна 1, т.е.

(1)

Тогда пара

, состоящая из конечного множества

и неотрицательной функции Р, определенной на

и удовлетворяющей условию (1), называется вероятностным пространством. Вероятность события А равна сумме вероятностей элементарных событий, входящих в А, т.е. определяется равенством

(2)

Сконструирован математический объект, основной при построении вероятностных моделей. Рассмотрим примеры.

Пример 1. Бросанию монеты соответствует вероятностное пространство с

= {Г, Р} и Р(Г) = Р(Р) = Ѕ; здесь обозначено: Г – выпал герб, Р – выпала решетка.

Пример 2.

Проверке качества одной единицы продукции (в ситуации, описанной в романе А.Н.Толстого «Хождение по мукам» — см. выше) соответствует вероятностное пространство с

= {Б, Г} и Р(Б) = 0,23, Р(Г) = 0,77; здесь обозначено: Б — дефектная единица продукции, Г – годная единица продукции; значение вероятности 0,23 взято из слов Струкова.

Отметим, что определение Р(А) согласуется с интуитивным представлением о связи вероятностей события и входящих в него элементарных событий, а также с распространенным мнением, согласно которому «вероятность события А – число от 0 до1, которое представляет собой предел частоты реализации события А при неограниченном числе повторений одного и того же комплекса условий».

Из определения вероятности события, свойств символа суммирования и равенства (1) вытекает, что

(3)

При практическом применении вероятностно-статистических методов принятия решений постоянно используется понятие независимости. Например, при применении статистических методов управления качеством продукции говорят о независимых измерениях значений контролируемых параметров у включенных в выборку единиц продукции, о независимости появления дефектов одного вида от появления дефектов другого вида, и т.д. Независимость случайных событий понимается в вероятностных моделях в следующем смысле.

Определение 2. События А и В называются независимыми, если Р(АВ) = Р(А) Р(В).

Это определение соответствует интуитивному представлению о независимости: осуществление или неосуществление одного события не должно влиять на осуществление или неосуществление другого.

Утверждение 1. Пусть события А и В независимы. Тогда события

и

независимы, события

и В независимы, события А и

независимы (здесь

— событие, противоположное А, и

— событие, противоположное В).

Действительно, из свойства в) в (3) следует, что для событий С и D, произведение которых пусто, P(C+D) = P(C) + P(D). Поскольку пересечение АВ и

В пусто, а объединение есть В, то Р(АВ) + Р(

В) = Р(В). Так как А и В независимы, то Р(

В) = Р(В) — Р(АВ) = Р(В) — Р(А)Р(В) = Р(В)(1 — Р(А)). Заметим теперь, что из соотношений (1) и (2) следует, что Р(

) = 1 – Р(А). Значит, Р(

В) = Р(

)Р(В).

Вывод равенства Р(А

) = Р(А)Р(

) отличается от предыдущего лишь заменой всюду А на В, а В на А.

Для доказательства независимости

и

воспользуемся тем, что события АВ,

В, А

,

не имеют попарно общих элементов, а в сумме составляют все пространство элементарных событий. Следовательно, Р(АВ) + Р(

В) + Р(А

) + Р(

) = 1. Воспользовавшись ранее доказанными соотношениями, получаем, что Р(

В)= 1 — Р(АВ) — Р(В)(1 — Р(А)) — Р(А)(1 — Р(В))= (1 – Р(А))(1 – Р(В)) = Р(

)Р(

), что и требовалось доказать.

Пример 3. Рассмотрим опыт, состоящий в бросании игрального кубика, на гранях которого написаны числа 1, 2, 3, 4, 5,6. Считаем, что все грани имеют одинаковые шансы оказаться наверху. Построим соответствующее вероятностное пространство. Покажем, что события «наверху – грань с четным номером» и «наверху – грань с числом, делящимся на 3» являются независимыми.

Разбор примера. Пространство элементарных исходов состоит из 6 элементов: «наверху – грань с 1», «наверху – грань с 2»,…, «наверху – грань с 6». Событие «наверху – грань с четным номером» состоит из трех элементарных событий – когда наверху оказывается 2, 4 или 6. Событие «наверху – грань с числом, делящимся на 3» состоит из двух элементарных событий – когда наверху оказывается 3 или 6. Поскольку все грани имеют одинаковые шансы оказаться наверху, то все элементарные события должны иметь одинаковую вероятность. Поскольку всего имеется 6 элементарных событий, то каждое из них имеет вероятность 1/6. По определению 1событие «наверху – грань с четным номером» имеет вероятность Ѕ, а событие «наверху – грань с числом, делящимся на 3» — вероятность 1/3. Произведение этих событий состоит из одного элементарного события «наверху – грань с 6», а потому имеет вероятность 1/6. Поскольку 1/6 = Ѕ х 1/3, то рассматриваемые события являются независимыми в соответствии с определением независимости.

В вероятностных моделях процедур принятия решений с помощью понятия независимости событий можно придать точный смысл понятию «независимые испытания». Для этого рассмотрим сложный опыт, состоящий в проведении двух испытаний. Эти испытания называются независимыми, если любые два события А и В, из которых А определяется по исходу первого испытания, а В – по исходу второго, являются независимыми.

Пример 4. Опишем вероятностное пространство, соответствующее бросанию двух монет независимо друг от друга.

Разбор примера. Пространство элементарных событий состоит из четырех элементов: ГГ, ГР, РГ, РР (запись ГГ означает, что первая монета выпала гербом и вторая – тоже гербом; запись РГ – первая – решеткой, а вторая – гербом, и т.д.). Поскольку события «первая монета выпала решеткой» и «вторая монета выпала гербом» являются независимыми по определению независимых испытаний и вероятность каждого из них равна Ѕ, то вероятность РГ равна ј. Аналогично вероятность каждого из остальных элементарных событий также равна ј.

Пример 5. Опишем вероятностное пространство, соответствующее проверке качества двух единиц продукции независимо друг от друга, если вероятность дефектности равна х.

Разбор примера. Пространство элементарных событий состоит из четырех элементов:

— обе единицы продукции годны;

— первая единица продукции годна, а вторая – дефектна;

— первая единица продукции дефектна, а вторая – годна;

— обе единицы продукции являются дефектными.

Вероятность того, что единица продукции дефектна, есть х, а потому вероятность того, что имеет место противоположное событие, т.е. единица продукции годна, есть 1 – х. Поскольку результат проверки первой единицы продукции не зависит от такового для второй, то

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
ПРИМЕРЫ ПРИМЕНЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ.
4.4.2. ОСНОВЫ ТЕОРИИ СТАТИСТИЧЕСКОГО КОНТРОЛЯ
Создание основ теории Я
16.2. Физиологические основы и психологические теории эмоций
ПОЛЯКОВ А.М. О ПСИХОЛОГИЧЕСКОЙ ПРАКТИКЕНА ОСНОВЕ ТЕОРИИ ДЕЯТЕЛЬНОСТИ
2.4.3. О РАЗРАБОТКЕ МЕТОДИКИ ЦЕНООБРАЗОВАНИЯ НА ОСНОВЕ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ
2.1 ЗАРУБЕЖНЫЕ ПСИХОЛОГИЧЕСКИЕ ТЕОРИИ, СОСТАВИВШИЕ ОСНОВУ ПЕДАГОГИЧЕСКОЙ ПСИХОЛОГИИ.
ГУМАНИСТИЧЕСКАЯ ПСИХОЛОГИЯ КАК ПАРАДИГМАЛЬ-НАЯ ОСНОВА ТЕОРИИ ВОСПИТАНИЯ
ВЕРОЯТНОСТЬ (PROBABILITY)
РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ
СУБЪЕКТИВНАЯ ВЕРОЯТНОСТЬ УСПЕХА
8.5.6. МЕТОД ПОКАЗАТЕЛЯ ВЕРОЯТНОСТИ УСПЕХА
2.2.1. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В ПРИНЯТИИ РЕШЕНИЙ
СИЛА И ВЕРОЯТНОСТЬ БОЯЗНИ ВОЗМОЖНОГО НАКАЗАНИЯ
ЯРОСТЬ, ВЕРОЯТНО, НАИБОЛЕЕ ОПАСНАЯ ЭМОЦИЯ.
КОГНИТИВНЫЕ ТЕОРИИ МОТИВАЦИИ, ИЛИ ТЕОРИИ ПОТРЕБНОСТИ В ЗНАНИИ
ГЕДОНИСТИЧЕСКИЕ ТЕОРИИ МОТИВАЦИИ, ИЛИ ТЕОРИИ УДОВОЛЬСТВИЯ
СИНТЕЗ ТЕОРИИ МЕСТА И ВРЕМЕННБЙ ТЕОРИИ
По всей вероятности, каждая форма экспрессии ассоциируется с конкретным знаком энергетического воздействия на окружавших.
Добавить комментарий