Философия искусственного интеллекта

Слабость теста Тьюринга состоит в том, что это бихевиористский тест. Для когнитивной науки важен анализ интенций и ментальных репрезентаций, обеспечивающих решение задачи. Неоменталистским ответом на тест Тьюринга и успехи вопросно-ответных программ стал мысленный эксперимент, описанный американским философом Джоном Сёрлом (Searle, 1991). Он предложил представить человека, находящегося в закрытом помещении. Через щель в комнату поступают письменные вопросы на китайском языке, о котором этот человек не имеет ни

ности для аналогий могут возникнуть в среднесрочной перспективе (см. 9.4.3). С задачей когнитивного моделирования в настоящее время непосредственно связано только развитие в области искусственных нейронных сетей (см. 2.3.3).

•» В 1997 году компьютерная программа впервые выиграла партию у чемпиона мира по шахматам. Интересно, что соответствующие программмы игры го далеко не столь сильны. Важнейшей причиной этого является более высокая комбинаторная сложность этой игры, ставящая перед компьютером (и программистом) проблему практической вычислимости. малейшего представления. Ему также не известна тематика вопросов. К счастью, при нем находится достаточно полный китайско-китайский толковый словарь. Найдя в словаре иероглифы, соответствующие толкованию иероглифов в записках, герой этой истории записывает их в качестве ответа и передает обратно через дверную щель. Для внешнего наблюдателя весь процесс может выглядеть как участие закрытого в «китайской комнате» человека в дискуссии экспертов… по истории средневекового Китая. Проблема, однако, состоит в том, что, симулируя работу компьютера и практически решая коммуникативную задачу, человек в комнате совершенно не осознает интенциональное содержание своей деятельности.

Это феноменологическое рассуждение (если нет интенционально-сти, то нет сознания, а следовательно, нет и человеческого мышления) служит одним из нескольких обсуждаемых в литературе радикальных аргументов против применения вычислительного подхода в психологии и против самой возможности построения искусственного интеллекта. Но аргументация Сёрла не безупречна. Слабым ее пунктом является рассмотрение заведомо ограниченной системы индивидуального сознания и мышления. Хотя человек в комнате, по определению, ничего не знает о содержании принимаемых и передаваемых сообщений, нельзя отрицать, что фактической основой его работы служит глубокое понимание языка и тематики обсуждения создателями толкового словаря и участниками ведущейся дискуссии. Используя нейрокогнитивную аналогию, можно уподобить сёрловского оператора частной подсистеме большого мозга. Так, зона Брока, играя важную роль в экспрессивном речевом общении (см. 7.3.3), тоже, по-видимому, «не понимает» намерений и содержания речи своего обладателя.

В последние десятилетия стали появляться примеры, как бы зеркально симметричные аргументу Сёрла. Речь идет об успешном решении задачи компьютером при отсутствии понимания природы этого решения человеком. Самым известным примером такого рода является доказательство теоремы о четырех красках. Еще в середине 19-го века было высказано предположение, что для раскраски карты таким образом, чтобы две имеющие общую границу области (страны) имели разную окраску, должно быть достаточно четырех красок. Несмотря на усилия выдающихся математиков, эта теорема не могла быть доказана вплоть до 1977 года, когда ее «доказала» относительно простая компьютерная программа, написанная К. Аппелем и В. Хакеном. Путем исчерпывающего перебора множества возможных сочетаний границ, программа продемонстрировала, что во всех случаях четырех красок действительно оказывается достаточно. Профессиональное сообщество математиков отнеслось к этому событию с большой долей скепсиса, так как, во-первых, остались непонятными концептуальные основания данного вывода, а во-вторых, любая программа, как было ясно уже в то время (до появления продукции фирмы Microsoft), может содержать

ошибку. Собственно «человеческое» доказательство теоремы появилось лишь спустя 20 лет, в 1997 году (MacKenzie, 2001).

Ситуации непонятности машинного решения для человека возникают, например, при распознавании объектов с помощью искусственных нейронных сетей, поскольку характер изменений в сетях в процессе обучения слишком сложен, чтобы его можно было затем проследить аналитически. Более того, эпизоды непонимания содержания производимых компьютерными системами операций и вытекающих из них выводов весьма частотны в реальной жизни — как в профессионально-технологическом контексте (проблема ситуативного сознания у пользователей полуавтоматизированных систем — см. 2.1.2), так и во все большей мере в повседневных бытовых условиях. Непонимание возникает здесь, в конечном счете, между пользователем и разработчиком технических систем. Но стремительное усложнение этих систем и их намечающееся автономное взаимодействие — автомобилей между собой и со знаками дорожного движения, домашних приборов с системой энергообеспечения дома и т.д. — заставляет и самих разработчиков опираться на компьютерные средства поддержки программирования и принимаемых при этом решений (как в случае систем CAD — Computer Aided Design).

Что касается теоретических обобщений этих результатов, то складывается впечатление, что часто они имеют характер «бракосочетания сомнительной эпистемологии и IBM». Унаследованный от формальной логики и вычислительной лингвистики интерес к играм с условными правилами, применяемым к дискретным символам, а также влияние философских взглядов Декарта и особенно Юма привели к тому, что основной стратегией исследования в когнитивной науке был объявлен методологический солипсизм (см. 1.1.2). Считая Юма первым подлинным представителем когнитивной науки, Фодор (Fodor, 1980) утверждает, что если нет различия между мыслью о предмете и просто мыслью, то предмет можно игнорировать. Этот вывод имеет определенные основания, так как при построении систем искусственного интеллекта наиболее существенными вопросами являются их непротиворечивость и программная реализуемость, а не соответствие реальным прототипам.

Основной задачей вычислительного подхода было объявлено изучение «языка мысли» (language of thought), предикаты которого, как считает Фодор (Fodor, 1978; Ray, 2003), являются врожденными и лежат в основе не только усвоения родного языка, но и вообще всех форм познавательной активности17. Язык мысли («менталезский язык»)

17 Критикуя с этих позиций работы Л.С. Выготского, Фодор (Fodor, 1972), похоже, не замечает трудностей, в которых оказывается его собственная концепция. Укажем одну из них. Предположение о существовании «языка мысли», кроме спорного утверждения о его врожденности, содержит опасность бесконечного регресса. Если «язык мысли» — это нечто вроде автокода вычислительного устройства или же своеобразный interlingua, опос редующий коммуникацию перцептивного и вербального знания, то, по-видимому, необ ходимы специальные языки-посредники для перевода информации с «языка восприя тия» и с естественного языка на «язык мысли». включает, наряду с логическими суждениями, пропозициями, также и пропозициональные установки, то есть метаоператоры субъективного отношения к ним, представленные ментальными предикатами (или «психологическими глаголами») «хотеть», «знать», «думать», «предполагать», «надеяться», «бояться» и т.д. (см. 6.3.1 и 7.4.1). Вопрос о ложности или истинности содержания пропозиций в подобных конструкциях приобретает подчеркнуто субъективный характер. Например, если некий персонаж по имени Петя «считает, что идет дождь», то справедливость этого утверждения остается (в первом приближении — см. 9.4.1) на совести Пети.

Отметим очевидную неполноту этого подхода. В качестве основы мышления человека здесь рассматривается исключительно важное, но все же явно ограниченное подмножество средств двух высших уровней функциональной организации интеллекта, а именно уровней ? и F. Рассматривая в предыдущей главе (см. 8.1.4 и 8.4.3) основные виды четакогнитив-ных координации, мы отмечали, что в их число входят и невербальные метапроцедуры воображения, позволяющие строить пространственные модели ситуаций и подвергать их изменениям, напоминающим изменения, которые возникают в ходе предметной деятельности. Предположение о сугубо формальной, пропозициональной основе внутренних репрезентаций проблематично в целом ряде отношений, прежде всего с точки зрения того, как мы решаем простейшие задачи с учетом пространственных отношений. Предположим (вслед за Джонсон-Лэйрдом — см. 8.2.2), что нам даны следующие условия «Анна сидит слева от Маши, а Маша сидит слева от Джона». Нужно определить взаимное положение Анны и Джона. Сделать это, используя только свойства логической транзитивности, невозможно, так как в том случае, если Анна, Маша и Джон сидят за круглым столом, Анна будет находиться не слева, а справа от Джона.

Пропозициональное описание оказывается в принципе недостаточным, если оно строится без учета предметной ситуации, то есть с позиций декларируемого методологического солипсизма. Полезным расширением теории языка мысли могла бы стать, например, ее интеграция с теорией перцептивных символьных систем (см. 6.4.2). Отдавая дань доминирующей в последнее десятилетие нейрокогнитивной парадигме, Фо-дор и другие сторонники рассматриваемого подхода признают сегодня, что функционирование языка мысли непосредственно коренится в работе нейрофизиологических систем мозга, сохраняя при этом, тем не менее, свой основанный на абстрактных вычислительных операциях характер. Так, например, порождение на языке мысли синонима русской фразы «Я боюсь» приводит к активации миндалины, затем ядер гипоталамуса, выделению адреналина и т.д., причем происходит все это столь же автоматически, как выполнение команд в компьютерной системе, где, скажем, появление на входе последовательности символов вида «begin print» ведет к распечатке текста.

Самым общим аргументом в пользу вычислительного подхода слу-310 жит ссылка на возможности машины Тьюринга.

Утверждается, что всякая

критика данного подхода, если она непротиворечива, должна допускать формализацию в виде программы работы машины Тьюринга. Это устройство, как отмечалось (см. 2.1.1), использует гомогенную систему репрезентации — цепочку символов из конечного алфавита. В таком же коде, как функция состояния и символа на ленте, описывается и поведение машины Тьюринга. Поэтому всякая логичная критика машинных моделей познавательных процессов может быть переведена если и не в реально, то, по крайней мере, в потенциально реализуемые программы вычислений18. Заслуживающие внимания критические замечания, следовательно, могут быть ассимилированы и использованы для демонстрации универсальности вычислительного подхода. С этой целью А. Ньюэлл и Г. Саймон разработали программу, моделирующую картину движений глаз шахматистов. Такие исследования проводились ранее советскими критиками искусственного интеллекта — O.K. Тихомировым и его коллегами (см., например, Тихомиров, 1969).

Этот аргумент, конечно, основан на ряде недоразумений. Его авторы не учитывают развитие самой математической логики. Во-первых, анализ вопроса о границе между реальной и потенциальной вычислимостью функций показал, что с помощью машины Тьюринга могут быть вычислены лишь сравнительно простые функции: формальные модели сложных систем оказываются более сложными, чем сами эти системы (Doyle, 2003)19. Во-вторых, средствами исчисления предикатов первого порядка («булевой алгебры»), с которой имеет дело машина Тьюринга, невозможно решать задачи новых разделов математической логики — конструктивной и модальной логики, прежде всего, подклассов так называемых временных и интенциональных (или эпистемических), логик, в случае которых, до известной степени, учитываются ресурсы, знания и интенции субъекта (см. 9.2.3).

Впрочем, недостаточно убедительны и радикальные аргументы против возможности вычислительной интерпретации человеческого интеллекта. Упоминавшаяся в самом начале данного подраздела китайская комната Сёрла отнюдь не единственный такой аргумент. Двумя другими, наиболее частотными аргументами являются ссылки на теорему Гёделя о неполноте формальных систем и на «проблему фрейма» (последнюю не следует путать с частными проблемами, возникающими в связи

18 Совершенно аналогично, несколькими десятилетиями ранее критиков психоанализа обвиняли в неизжитых сексуальных комплексах.

» Упомянутая здесь проблема вычислимости по-разному ставится для разных классов вычислительных устройств. Решение задач, практически недоступных из-за продолжи тельности требуемых операций для машины Тьюринга и реализующих эту идею компью теров с фон-неймановской архитектурой, может, в принципе, оказаться в пределах дося гаемости для так называемых клеточных автоматов и особенно для (пока, впрочем, до вольно гипотетических) квантовых компьютеров, способных к чрезвычайно быстрым па раллельным вычислениям. с использованием «фреймов» в качестве определенного формата представления знаний — см. 2.3.2 и 6.3.1).

Согласно теореме о неполноте, доказанной Куртом Гёделем в 1931 году, во всякой строго формальной системе имеются некоторые утверждения, которые не могут быть ни доказаны, ни опровергнуты в рамк.ах данной системы10. Следовательно, полагают современные критики вычислительного подхода, формальное описание таких сложных систем, как сознание или интеллект человека, также обречены на неполноту и полноценный искусственный интеллект невозможен. Это рассуждение едва ли правомерно, так как вычислительные теории в когнитивной науке никогда и не претендовали (в действительности, не могли претендовать) на строгость таких формальных систем, как арифметика. Всякая попытка исчерпывающего логического описания когнитивных структур заведомо должна была бы кончиться неудачей, поскольку в психологии, как отмечал еще Кант, особенно выражена зависимость данных от процедуры исследования и, кроме того, сам объект исследования имеет непрерывный характер. Существуют многочисленные примеры эмпирически мотивированных дополнений в вычислительных моделях языка и мышления. К ним относятся постулаты значения Карнапа (см. 6.1.1), а также разнообразные эвристики мышления и принятия решений, впервые систематизированные как раз видными представителями работ в области искусственного интеллекта Ньюэллом и Саймоном (см. 8.1.1 и 8.4.1).

Серьезные, но скорее технические последствия для создания искусственных интеллектуальных систем влечет за собой проблема фрейма — необходимость постоянного пересмотра некоторого подмножества знаний по мере изменения ситуации и накопления опыта. Например, получив информацию, что некоторое живое существо «Z» — «это птица», мы сразу же приходим к весьма вероятному выводу, что ? строит гнезда, поет и способна летать (см. 6.2.1). Предположим, однако, что через какое-то время выясняется, что «? — это пингвин». Это уточнение требует пересмотра сделанного ранее заключения. Суть возникающих в общем случае трудностей состоит в том, что нет никаких алгоритмических критериев для определения границ подлежащих пересмотру знаний. Все решения этой проблемы могут быть только частными и в лучшем случае эвристическими. В современном логическом программировании для этого используются средства так называемых немонотонных логик (Gelfond & Watson, 2003). В естественно-языковых системах решение может состоять в контроле только похожих по содержанию текстов (см. 6.1.1 и 7.4.3). В роботике, где проблема фрейма стоит особенно остро, она заставляет некоторых разработчиков в последнее время вообще отказываться от когнитивных, основанных на знаниях архитектур (см. 9.2.3).

2(1 Методологическое значение теоремы о неполноте состоит в доказательстве невозможности построения замкнутой внутри себя и самообосновывающейся научной системы. Иначе говоря, наука не может быть учением, а учение не может быть наукой (Непей-312 вода, 2000).

Итак, несмотря на многочисленные аргументы pro и contra, вопрос о возможности построения искусственного интеллекта по-прежнему остается полностью открытым. Здесь уместна следующая историческая аналогия. Казалось бы, механистический образ la statue animee проходит через всю французскую философскую литературу 18-го века. При этом он служит одним авторам для обоснования дуалистических (Кондильяк, Буро Деланд, Гольбах, Ламетри), а другим — экзистенциалистских (Паскаль) и диалектических взглядов (Бюффон и Дидро). Что касается собственно исследования познавательных процессов, то, как заметил когда-то в своем эссе о кибернетике С.Л. Рубинштейн, «»мышление» любых машин — это мышление человека, спроецированное в машины». Понимание механизмов психики может быть достигнуто прежде всего «исследованием… человеческого мозга и путей его формирования» (Рубинштейн, 1976, с. 239). С развитием вычислительного потенциала машин происходит развитие мышления самого человека — во всяком случае, эта тенденция неизменно доминировала до сих пор. Большинство специалистов не стремятся создать искусственный разум, рассматривая эту область как совокупность научных направлений, каждое из которых исследует то или иное свойство интеллекта.

Оценивая перспективу вычислительной ориентации когнитивных исследований в целом, нельзя отрицать, что, например, системы продукции представляют собой мощное средство описания больших массивов поведенческих и интроспективных данных, которое могло бы использоваться в самых разных разделах психологии. Для некоторых авторов современный вычислительный подход привлекателен «смещением акцентов в сторону изучения действия» (хотя на самом деле продукции скорее напоминают связи стимул—реакция). Эксцессы методологического солипсизма уравновешиваются вполне реалистической ориентацией работ других ведущих представителей когнитивных исследований. В частности, Дональд Норман (Norman, 1981) одним из первых сформулировал для когнитивной науки программу развития, включавшую изучение навыков, эмоциональной регуляции действия и роли социальных норм, тогда как М. Познер и Г. Шульман предупредили, что «угрозой для когнитивной науки является превращение в «искусственную науку», не вносящую вклад в понимание человеческого мозга и человеческой культуры» (Posner & Shulman, 1979, p. 402).

Следует отметить, что вычислительный подход наиболее успешен именно в нейрокогнитивных исследованиях, когда удается связать модели нейронных механизмов с картиной поведения и его нарушений (O’Reilly & Munakata, 2003). Так, представление о гомогенных активирующих и тормозных взаимодействиях в нейронных сетях позволяет описать возникающие при поражениях теменных отделов коры затруднения в переводе взора и внимания в сторону, противоположную стороне поражения (см. 4.3.2 и 4.4.3). Эти затруднения М. Познер объясняет выпа-

дением особого механизма «отцепления (англ. disengagement) внимания от объекта». Доказательством считается увеличение времени реакции обнаружения целевого объекта при предъявлении ошибочной пространственной инструкции в методике «проигрыша-выигрыша». Не прибегая к представлению о механизме «отцепления», коннекционистские модели теменных поражений предсказывают двойной эффект — увеличение времени реакции при ошибочной («больший проигрыш») и при правильной инструкции («меньший выигрыш»). Этот двойной эффект и наблюдается у пациентов с подобными поражениями. В других модельных экспериментах было также показано, что эффекты торможения в тесте Струпа и аналогичных ситуациях, возможно, являются просто побочным продуктом активного удержания релевантной для решения задачи информации в рабочей памяти. Однако от этих новых исследований до создания сколь-нибудь автономного «нейроинтеллекта» все еще очень далеко.

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
ГЛАВА 16. Искусственный интеллект
Будущее искусственного интеллекта
Значение и искусственный интеллект
Язык и искусственный интеллект
Искусственный интеллект и художественное творчество
Искусственный интеллект и научные исследования
Репрезентация и знание в искусственном интеллекте
9.2.1 Искусственный интеллект и человеческий разум
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ (ARTIFICIAL INTELLIGENCE)
Сырникова СИСТЕМНОЕ ПОНИМАНИЕ ИНТЕЛЛЕКТА КАК ОСНОВА ДЛЯ СОЗДАНИЯ ЕГО ИСКУССТВЕННЫХ ФОРМ
Развитие психологических знаний в античной философии.
ФИЛОСОФИЯ КНИГИ
ФИЛОСОФИЯ НАУКИ (PHILOSOPHY OF SCIENCE)
Амбурладзе Р.В. КОНЦЕПЦИИ ПСИХОЛОГИИ ПРИХОДЯТ В ФИЛОСОФИЮ
ТЕМА 6. СОВРЕМЕННОЕ СОСТОЯНИЕ ФИЛОСОФИИ ВОСПИТАНИЯ
ТЮПТЯ Е.В. ФИЛОСОФИЯ ОБРАЗОВАНИЯ КАК НАПРАВЛЕНИЕ НАУЧНОГО ИССЛЕДОВАНИЯ
ТЕМА 5. ФИЛОСОФИЯ СОЦИАЛЬНОГО ВОСПИТАНИЯ
Курлов Г.П. Путь к Дураку. Философия Смеха Книга первая, 0000
2.1. Представления античных и средневековых философов о душе и сознании
К ПРОБЛЕМЕ ОНТОЛОГИЧЕСКОГО АНАЛИЗА ПРЕДСТАВЛЕНИЙ О ТЕРПИМОСТИ В ФИЛОСОФИИ
Добавить комментарий