ДИСКРЕТНЫЕ РАСПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДАХ ПРИНЯТИЯ РЕШЕНИЙ.

Наиболее часто используют три семейства дискретных распределений — биномиальных, гипергеометрических и Пуассона, а также некоторые другие семейства — геометрических, отрицательных биномиальных, мультиномиальных, отрицательных гипергеометрических и т.д.

Как уже говорилось, биномиальное распределение имеет место при независимых испытаниях, в каждом из которых с вероятностью р появляется событие А. Если общее число испытаний n задано, то число испытаний Y, в которых появилось событие А, имеет биномиальное распределение. Для биномиального распределения вероятность принятия случайной величиной Y значения y определяется формулой

(19)

где

— число сочетаний из n элементов по y, известное из комбинаторики. Для всех y, кроме 0, 1, 2, …, n, имеем P(Y=y)=0. Биномиальное распределение при фиксированном объеме выборки n задается параметром p, т.е. биномиальные распределения образуют однопараметрическое семейство. Они применяются при анализе данных выборочных исследований , в частности, при изучении предпочтений потребителей, выборочном контроле качества продукции по планам одноступенчатого контроля, при испытаниях совокупностей индивидуумов в демографии, социологии, медицине, биологии и др.

Если Y1 и Y2 — независимые биномиальные случайные величины с одним и тем же параметром p0, определенные по выборкам с объемами n1 и n2 соответственно, то Y1 + Y2 — биномиальная случайная величина, имеющая распределение (19) с р = p0 и n = n1 + n2. Это замечание расширяет область применимости биномиального распределения, позволяя объединять результаты нескольких групп испытаний, когда есть основания полагать, что всем этим группам соответствует один и тот же параметр.

Характеристики биномиального распределения вычислены ранее:

M(Y) = np, D(Y) = np(1-p).

В разделе «События и вероятности» для биномиальной случайной величины доказан закон больших чисел:

для любого

. С помощью центральной предельной теоремы закон больших чисел можно уточнить, указав, насколько Y/n отличается от р.

Теорема Муавра-Лапласа. Для любых чисел a и b, a

где Ф(х) – функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1.

Для доказательства достаточно воспользоваться представлением Y в виде суммы независимых случайных величин, соответствующих исходам отдельных испытаний, формулами для M(Y) и D(Y) и центральной предельной теоремой.

Эта теорема для случая р = Ѕ доказана английским математиком А.Муавром (1667-1754) в 1730 г. В приведенной выше формулировке она была доказана в 1810 г. французским математиком Пьером Симоном Лапласом (1749 – 1827).

Гипергеометрическое распределение имеет место при выборочном контроле конечной совокупности объектов объема N по альтернативному признаку. Каждый контролируемый объект классифицируется либо как обладающий признаком А, либо как не обладающий этим признаком. Гипергеометрическое распределение имеет случайная величина Y, равная числу объектов, обладающих признаком А в случайной выборке объема n, где n

Для гипергеометрического распределения вероятность принятия случайной величиной Y значения y имеет вид

(20)

где D – число объектов, обладающих признаком А, в рассматриваемой совокупности объема N. При этом y принимает значения от max{0, n — (N — D)} до min{n, D}, при прочих y вероятность в формуле (20) равна 0.

Таким образом, гипергеометрическое распределение определяется тремя параметрами – объемом генеральной совокупности N, числом объектов D в ней, обладающих рассматриваемым признаком А, и объемом выборки n.

Простой случайной выборкой объема n из совокупности объема N называется выборка, полученная в результате случайного отбора, при котором любой из

наборов из n объектов имеет одну и ту же вероятность быть отобранным. Методы случайного отбора выборок респондентов (опрашиваемых) или единиц штучной продукции рассматриваются в инструктивно-методических и нормативно-технических документах. Один из методов отбора таков: объекты отбирают один из другим, причем на каждом шаге каждый из оставшихся в совокупности объектов имеет одинаковые шансы быть отобранным. В литературе для рассматриваемого типа выборок используются также термины «случайная выборка», «случайная выборка без возвращения».

Поскольку объемы генеральной совокупности (партии) N и выборки n обычно известны, то подлежащим оцениванию параметром гипергеометрического распределения является D. В статистических методах управления качеством продукции D – обычно число дефектных единиц продукции в партии. Представляет интерес также характеристика распределения D/N – уровень дефектности.

Для гипергеометрического распределения

Последний множитель в выражении для дисперсии близок к 1, если N>10n. Если при этом сделать замену p = D/N, то выражения для математического ожидания и дисперсии гипергеометрического распределения перейдут в выражения для математического ожидания и дисперсии биномиального распределения. Это не случайно. Можно показать, что

при N>10n, где p = D/N. Справедливо предельное соотношение

и этим предельным соотношением можно пользоваться при N>10n.

Третье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

,

где ? – параметр распределения Пуассона, и P(Y=y)=0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

M(Y) = ?, D(Y) = ?.

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = ?. Точнее, справедливо предельное соотношение

Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».

Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью ? число событий (вызовов), происшедших за время t, имеет распределение Пуассона с параметром ? = ?t. Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e-?t, т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в литературе.

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
НЕПРЕРЫВНЫЕ РАСПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДАХ ПРИНЯТИЯ РЕШЕНИЙ.
3.3. ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
2.2.3. СУТЬ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДОВ ПРИНЯТИЯ РЕШЕНИЙ
2.2. ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ОПИСАНИЯ НЕОПРЕДЕЛЕННОСТЕЙ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ
ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ И ОПТИМИЗАЦИЯ.
ПЛАНЫ СТАТИСТИЧЕСКОГО КОНТРОЛЯ И ПРАВИЛА ПРИНЯТИЯ РЕШЕНИЙ.
4.4.3. НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ ВОПРОСЫ ПРИНЯТИЯ РЕШЕНИЙ ПРИ СТАТИСТИЧЕСКОМ КОНТРОЛЕ КАЧЕСТВА ПРОДУКЦИИ И УСЛУГ
3.3.1.ЭКОНОМЕТРИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ В КОНТРОЛЛИНГЕ
3.4. ЭКСПЕРТНЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
3. МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МОДЕЛИ.
3.1. ПРОСТЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
Добавить комментарий