НЕПРЕРЫВНЫЕ РАСПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДАХ ПРИНЯТИЯ РЕШЕНИЙ.

Кроме масштабно-сдвигового семейства нормальных распределений, широко используют ряд других семейств распределения – логарифмически нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений. Рассмотрим эти семейства.

Случайная величина Х имеет логарифмически нормальное распределение, если случайная величина Y = lg X имеет нормальное распределение. Тогда Z = ln X = 2,3026…Y также имеет нормальное распределение

N(a1,?1), где ln X — натуральный логарифм Х. Плотность логарифмически нормального распределения такова:

Из центральной предельной теоремы следует, что произведение X = X1X2…Xn независимых положительных случайных величин Xi, i = 1, 2,…, n, при больших n можно аппроксимировать логарифмически нормальным распределением. В частности, мультипликативная модель формирования заработной платы или дохода приводит к рекомендации приближать распределения заработной платы и дохода логарифмически нормальными законами. Для России эта рекомендация оказалась обоснованной — статистические данные подтверждают ее.

Имеются и другие вероятностные модели, приводящие к логарифмически нормальному закону. Классический пример такой модели дан А.Н.Колмогоровым , который из физически обоснованной системы постулатов вывел заключение о том, что размеры частиц при дроблении кусков руды, угля и т.п. на шаровых мельницах имеют логарифмически нормальное распределение.

Перейдем к другому семейству распределений, широко используемому в различных вероятностно-статистических методах принятия решений и других прикладных исследованиях, — семейству экспоненциальных распределений. Начнем с вероятностной модели, приводящей к таким распределениям. Для этого рассмотрим «поток событий», т.е. последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток отказов оборудования в технологической цепочке; поток отказов изделий при испытаниях продукции; поток обращений клиентов в отделение банка; поток покупателей, обращающихся за товарами и услугами, и т.д. В теории потоков событий справедлива теорема, аналогичная центральной предельной теореме, но в ней речь идет не о суммировании случайных величин, а о суммировании потоков событий. Рассматривается суммарный поток, составленный из большого числа независимых потоков, ни один из которых не оказывает преобладающего влияния на суммарный поток. Например, поток вызовов, поступающих на телефонную станцию, слагается из большого числа независимых потоков вызовов, исходящих от отдельных абонентов. Доказано , что в случае, когда характеристики потоков не зависят от времени, суммарный поток полностью описывается одним числом

— интенсивностью потока. Для суммарного потока рассмотрим случайную величину Х — длину промежутка времени между последовательными событиями. Ее функция распределения имеет вид

(10)

Это распределение называется экспоненциальным распределением, т.к. в формуле (10) участвует экспоненциальная функция e-?x. Величина 1/? — масштабный параметр. Иногда вводят и параметр сдвига с, экспоненциальным называют распределение случайной величины Х + с, где распределение Х задается формулой (10).

Экспоненциальные распределения — частный случай т. н. распределений Вейбулла — Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результатов усталостных испытаний, и математика Б.В.Гнеденко (1912-1995), получившего такие распределения в качестве предельных при изучении максимального из результатов испытаний. Пусть Х — случайная величина, характеризующая длительность функционирования изделия, сложной системы, элемента (т.е. ресурс, наработку до предельного состояния и т.п.), длительность функционирования предприятия или жизни живого существа и т.д. Важную роль играет интенсивность отказа

(11)

где F(x) и f(x) — функция распределения и плотность случайной величины Х.

Опишем типичное поведение интенсивности отказа. Весь интервал времени можно разбить на три периода. На первом из них функция ?(х) имеет высокие значения и явную тенденцию к убыванию (чаще всего она монотонно убывает). Это можно объяснить наличием в рассматриваемой партии единиц продукции с явными и скрытыми дефектами, которые приводят к относительно быстрому выходу из строя этих единиц продукции. Первый период называют «периодом приработки» (или «обкатки»). Именно на него обычно распространяется гарантийный срок.

Затем наступает период нормальной эксплуатации, характеризующийся приблизительно постоянной и сравнительно низкой интенсивностью отказов. Природа отказов в этот период носит внезапный характер (аварии, ошибки эксплуатационных работников и т.п.) и не зависит от длительности эксплуатации единицы продукции.

Наконец, последний период эксплуатации — период старения и износа. Природа отказов в этот период — в необратимых физико-механических и химических изменениях материалов, приводящих к прогрессирующему ухудшению качества единицы продукции и окончательному выходу ее из строя.

Каждому периоду соответствует свой вид функции ?(х). Рассмотрим класс степенных зависимостей

?(х) = ?0bxb-1, (12)

где ?0 > 0 и b > 0 — некоторые числовые параметры. Значения b < 1, b = 0 и b > 1 отвечают виду интенсивности отказов в периоды приработки, нормальной эксплуатации и старения соответственно.

Соотношение (11) при заданной интенсивности отказа ?(х) — дифференциальное уравнение относительно функции F(x). Из теории дифференциальных уравнений следует, что

(13)

Подставив (12) в (13), получим, что

(14)

Распределение, задаваемое формулой (14) называется распределением Вейбулла — Гнеденко.

Поскольку

где

(15)

то из формулы (14) следует, что величина а, задаваемая формулой (15), является масштабным параметром. Иногда вводят и параметр сдвига, т.е. функциями распределения Вейбулла — Гнеденко называют F(x — c), где F(x) задается формулой (14) при некоторых ?0 и b.

Плотность распределения Вейбулла — Гнеденко имеет вид

(16)

где a > 0 — параметр масштаба, b > 0 — параметр формы, с — параметр сдвига. При этом параметр а из формулы (16) связан с параметром ?0 из формулы (14) соотношением, указанным в формуле (15).

Экспоненциальное распределение — весьма частный случай распределения Вейбулла — Гнеденко, соответствующий значению параметра формы b = 1.

Распределение Вейбулла — Гнеденко применяется также при построении вероятностных моделей ситуаций, в которых поведение объекта определяется «наиболее слабым звеном». Подразумевается аналогия с цепью, сохранность которой определяется тем ее звеном, которое имеет наименьшую прочность. Другими словами, пусть X1, X2,…, Xn — независимые одинаково распределенные случайные величины,

X(1) = min (X1, X2,…, Xn), X(n) = max (X1, X2,…, Xn).

В ряде прикладных задач большую роль играют X(1) и X(n), в частности, при исследовании максимально возможных значений («рекордов») тех или иных значений, например, страховых выплат или потерь из-за коммерческих рисков, при изучении пределов упругости и выносливости стали, ряда характеристик надежности и т.п. Показано, что при больших n распределения X(1) и X(n), как правило, хорошо описываются распределениями Вейбулла — Гнеденко. Основополагающий вклад в изучение распределений X(1) и X(n) внес советский математик Б.В.Гнеденко. Использованию полученных результатов в экономике, менеджменте, технике и других областях посвящены труды В. Вейбулла, Э. Гумбеля, В.Б. Невзорова, Э.М. Кудлаева и многих иных специалистов.

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гама-распределения имеет вид

(17)

Плотность вероятности в формуле (17) определяется тремя параметрами a, b, c, где a>0, b>0. При этом a является параметром формы, b — параметром масштаба и с — параметром сдвига. Множитель 1/?(а) является нормировочным, он введен, чтобы

Здесь ?(а) — одна из используемых в математике специальных функций, так называемая «гамма-функция», по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с ? = 1/b). При натуральном а и с=0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами ? и с, имеет гамма-распределение с параметром формы а = k, параметром масштаба b = 1/? и параметром сдвига kc. При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2a — целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

— математическое ожидание М(Х) = ab + c,

— дисперсию D(X) = ?2 = ab2,

— коэффициент вариации

— асимметрию

— эксцесс

Нормальное распределение — предельный случай гамма-распределения. Точнее, пусть Z — случайная величина, имеющая стандартное гамма-распределение, заданное формулой (18). Тогда

для любого действительного числа х, где Ф(х) — функция стандартного нормального распределения N(0,1).

В прикладных исследованиях используются и другие параметрические семейства распределений, из которых наиболее известны система кривых Пирсона, ряды Эджворта и Шарлье. Здесь они не рассматриваются.

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
ДИСКРЕТНЫЕ РАСПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДАХ ПРИНЯТИЯ РЕШЕНИЙ.
3.3. ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
2.2.3. СУТЬ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИХ МЕТОДОВ ПРИНЯТИЯ РЕШЕНИЙ
2.2. ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ ОПИСАНИЯ НЕОПРЕДЕЛЕННОСТЕЙ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ
ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МЕТОДЫ И ОПТИМИЗАЦИЯ.
ПЛАНЫ СТАТИСТИЧЕСКОГО КОНТРОЛЯ И ПРАВИЛА ПРИНЯТИЯ РЕШЕНИЙ.
4.4.3. НЕКОТОРЫЕ ПРАКТИЧЕСКИЕ ВОПРОСЫ ПРИНЯТИЯ РЕШЕНИЙ ПРИ СТАТИСТИЧЕСКОМ КОНТРОЛЕ КАЧЕСТВА ПРОДУКЦИИ И УСЛУГ
3.3.1.ЭКОНОМЕТРИЧЕСКИЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ В КОНТРОЛЛИНГЕ
3.4. ЭКСПЕРТНЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
3. МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЕ МОДЕЛИ.
3.1. ПРОСТЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ
3.2. Методы принятия группового решения
ЗАДАЧИ ПО МЕТОДАМ ПРИНЯТИЯ РЕШЕНИЙ
1.4.3. НЕКОТОРЫЕ МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ В СТРАТЕГИЧЕСКОМ МЕНЕДЖМЕНТЕ
МЕТОДЫ, ИСПОЛЬЗУЕМЫЕ НА ТРЕНИРОВОЧНЫХ ЗАНЯТИЯХ.
2.2.1. ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА В ПРИНЯТИИ РЕШЕНИЙ
Добавить комментарий