ОПТИМАЛЬНЫЙ ПЛАН.

Найдем наилучший план поставок. План, для которого запас равен 0 (т.е. y(t) = 0) в моменты доставок очередных партий, назовем напряженным.

Утверждение 1. Для любого плана поставок, не являющегося напряженным, можно указать напряженный план, для которого средние издержки меньше.

Покажем, как можно от произвольного плана перейти к напряженному, уменьшив при этом издержки. Пусть с течением времени при приближении к моменту t1 прихода поставки Q1 уровень запаса не стремится к 0, а лишь уменьшается до

(где знак «минус» означает предел слева функции y(t) в точке t1). Тогда рассмотрим новый план поставок с теми же моментами поставок и их величинами, за исключением величин поставок в моменты t = 0 и t = t1. А именно, заменим Q0 на Q01 = Q0 — y(t1-), а Q1 на Q11 = Q0 + y(t1-). Тогда график уровня запаса на складе параллельно сдвинется вниз на интервале (0; t1), достигнув 0 в t1, и не изменится правее точки t1. Следовательно, издержки по доставке партий не изменятся, а издержки по хранению уменьшатся на величину, пропорциональную (с коэффициентом пропорциональности s) площади параллелограмма, образованного прежним и новым положениями графика уровня запаса на интервале (0; t1) (см. рис.2).

y

QQ0 Q1 Q Q01

0 t1 t2 t3 t

Первый шаг перехода к напряженному плану

Итак, в результате первого шага перехода получен план, в котором крайний слева зубец достигает оси абсцисс. Следующий шаг проводится аналогично, только момент времени t = 0 заменяется на t = t1. Если есть такая возможность, второе наклонное звено графика уровня запаса на складе параллельно сдвигается вниз, достигая в крайней правой точке t2 оси абсцисс.

Аналогично поступаем со всеми остальными зубцами, двигаясь слева направо. В результате получаем напряженный план. На каждом шагу издержки по хранению либо сокращались, либо оставались прежними (если соответствующее звено графика не опускалось вниз). Следовательно, для полученного в результате описанного преобразования напряженного плана издержки по хранению меньше, чем для исходного плана, либо равны (если исходный план уже являлся напряженным).

Из утверждения 1 следует, что оптимальный план следует искать только среди напряженных. Другими словами, план, не являющийся напряженным, не может быть оптимальным.

Утверждение 2. Среди напряженных планов с фиксированным числом поставок минимальные издержки имеет тот, в котором все интервалы между поставками равны.

При фиксированном числе поставок затраты на доставку партий не меняются. Следовательно, достаточно минимизировать затраты на хранение.

Для напряженных планов размеры поставок однозначно определяются с помощью интервалов между поставками:

Действительно, очередная поставка величиной Qi-1 совпадает с размером запаса на складе в момент ti-1, расходуется с интенсивностью

единиц товара в одну единицу времени и полностью исчерпывается к моменту ti прихода следующей поставки.

Для напряженного плана издержки по хранению равны

где

Ясно, что

— произвольные неотрицательные числа, в сумме составляющие Т. Следовательно, для минимизации издержек среди напряженных планов с фиксированным числом поставок достаточно решить задачу оптимизации

где n = n(T).

Полученная задача оптимизации формально никак не связана с логистикой, она является чисто математической. Для ее решения целесообразно ввести новые переменные

Тогда

Поскольку

то

следовательно, с учетом предыдущего равенства имеем

Сумма квадратов всегда неотрицательна. Она достигает минимума, равного 0, когда все переменные равны 0, т.е. при

Тогда

При этих значениях

выполнены все ограничения оптимизационной задачи. Итак, утверждение 2 доказано.

Для плана с равными интервалами между поставками все партии товара имеют одинаковый объем. Для такого плана издержки по хранению равны

Средние издержки (на единицу времени) таковы:

Итак, минимизация средних издержек – это задача дискретной оптимизации. На третьем этапе построения оптимального плана необходимо найти натуральное число n(T) – самое выгодное число поставок.

Поскольку к моменту Т запас товара должен быть израсходован, то общий объем поставок за время T должен совпадать с общим объемом спроса, следовательно, равняться

Т. Справедливо балансовое соотношение (аналог закона Ломоносова-Лавуазье сохранения массы при химических реакциях):

Из балансового соотношения следует, что

Средние издержки (на единицу времени) можно выразить как функцию размера партии Q:

(1)

Задача состоит в минимизации f1(Q) по Q. При этом возможная величина поставки принимает дискретные значения,

Изучим функцию f1(Q), определенную при Q>0. При приближении к 0 она ведет себя как гипербола, при росте аргумента – как линейная функция. Производная имеет вид

(2)

Производная монотонно возрастает, поэтому рассматриваемая функция имеет единственный минимум в точке, в которой производная равна 0, т.е. при

(3)

Получена знаменитая «формула квадратного корня».

В литературе иногда без всяких комментариев рекомендуют использовать напряженный план, в котором размеры всех поставляемых партий равны Q0. К сожалению, получаемый таким путем план почти всегда не является оптимальным, т.е. популярная рекомендация неверна или не вполне корректна. Дело в том, что почти всегда

Всегда можно указать неотрицательное целое число n такое, что

(4)

Утверждение 3. Решением задачи оптимизации

является либо Q1, либо Q2.

Действительно, из всех

часть лежит правее Q0, из них наименьшим является Q2, а часть лежит левее Q0, из них наибольшим является Q1. Для построения оптимального плана обратим внимание на то, что производная (2) отрицательна левее Q0 и положительна правее Q0, следовательно, функция средних издержек f1(Q) убывает левее Q0 и возрастает правее Q0. Значит, минимум по

достигается при Q = Q2, а минимум по

— при Q = Q1 Последнее утверждение эквивалентно заключению утверждения 3.

Итак, алгоритм построения оптимального плана таков.

1. Найти Q0 по формуле квадратного корня (3).

2. Найти n из условия (4).

3. Рассчитать f1(Q) по формуле (1) для Q = Q1 и Q = Q2, где Q1 и Q2 определены в (4).

4. Наименьшее из двух чисел f1(Q1) и f1(Q2) является искомым минимумом, а то из Q1 и Q2, на котором достигается минимум – решением задачи оптимизации. Обозначим его Qopt.

Оптимальный план поставки – это напряженный план, в котором объемы всех поставок равны Qopt.

Замечание. Если f1(Q1) = f1(Q2), то решение задачи оптимизации состоит из двух точек Q1 и Q2. В этом частном случае существует два оптимальных плана.

Пример 1. На складе хранится некоторая продукция, пользующаяся равномерным спросом. За 1 день со склада извлекается 5 т продукции. Плата за хранение 1 т. продукции в день – 50 руб. Плата на доставку одной партии – 980 руб. Горизонт планирования – 10 дней. Найти оптимальный план поставок.

В рассматриваемом случае

=5 (т/день), s=50 (руб./т.день), g=980 (руб./партия), Т = 10 (дней). По формуле (3) рассчитываем

Множество допустимых значений для Q имеет вид

Следовательно, Q1 = 12,5 и Q2 = 16,67. Первое значение определяет напряженный план с четырьмя одинаковыми зубцами, а второе – с тремя. Поскольку

то

и

Поскольку f1(Q1) < f1(Q2), то Qopt = Q1 = 12,5. Итак, оптимальным является напряженный план с четырьмя зубцами.

Как уже отмечалось, часто рекомендуют применять план поставок с Q=Q0. Каков при этом проигрыш по сравнению с оптимальным планом?

Для плана с Q=Q0 интервал между поставками составляет

дня. Следовательно, партии придут в моменты t0 = 0; t1= 2,8; t2 = 5,6; t3 = 8,4. Следующая партия должна была бы придти уже за пределами горизонта планирования Т =10, в момент t4 = 11,2. Таким образом, график уровня запаса на складе в пределах горизонта планирования состоит из трех полных зубцов и одного не полного. К моменту Т =10 пройдет 10 – 8,4 = 1,6 дня с момента последней поставки, значит, со склада будет извлечено

т продукции и останется 14 – 8 = 6 т. План с Q=Q0 не является напряженным, а потому не является оптимальным для горизонта планирования Т =10.

Подсчитаем общие издержки в плане с Q=Q0. Площадь под графиком уровня запаса на складе равна сумме площадей трех треугольников и трапеции. Площадь треугольника равна

трех треугольников – 58,8. Основания трапеции параллельны оси ординат и равны значениям уровня запаса в моменты времени t3 = 8,4 и Т =10, т.е. величинам 14 и 6 соответственно. Высота трапеции лежит на оси абсцисс и равна 10 – 8,4 = 1,6, а потому площадь трапеции есть

Следовательно, площадь под графиком равна 58,8 + 16 = 74,8, а плата за хранение составляет

руб.

За 10 дней доставлены 4 партии товара (в моменты t0 = 0; t1= 2,8; t2 = 5,6; t3 = 8,4), следовательно, затраты на доставку равны

руб. Общие издержки за 10 дней составляют 3740+3920 = 7660 руб., а средние издержки – 766 руб. Они больше средних издержек в оптимальном плане в 766/704,5 = 1,087 раза, т.е. на 8,7%.

Отметим, что

т.е. меньше, чем в оптимальном плане. Таким образом, из-за дискретности множества допустимых значений средние издержки возросли на 4,5 руб., т.e. на 0,64%. При этом оптимальный размер партии (12,5 т) отличается от Q0 = 14 т на 1,5 т, т.е. Qopt/ Q0 = 0,89 – различие на 11%. Достаточно большое различие объемов поставок привело к пренебрежимо малому изменению функции f1(Q). Это объясняется тем, что в точке Q0 функция f1(Q) достигает минимума, а потому ее производная в этой точке равна 0.

Оба слагаемых в f1(Q0) равны между собой. Случайно ли это? Покажем, что нет. Действительно,

Таким образом, составляющие средних издержек, порожденные различными причинами, уравниваются между собой.

Средние издержки с плане с Q=Q0 равны

. Интервал между поставками при этом равен

.

Издержки в течение одного интервала между поставками таковы:

,

при этом половина (т.е. g) приходится на оплату доставки партии, а половина – на хранение товара.

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
АСИМПТОТИЧЕСКИ ОПТИМАЛЬНЫЙ ПЛАН.
ПСИХОЛОГИЯ ОПТИМАЛЬНЫХ ЛЮДЕЙ.
ЧЕРТЫ ОПТИМАЛЬНОЙ ЛИЧНОСТИ
ОПТИМАЛЬНОЕ РОДИТЕЛЬСКОЕ ПОВЕДЕНИЕ.
ВЛИЯНИЕ ОТКЛОНЕНИЙ ОТ ОПТИМАЛЬНОГО ОБЪЕМА ПАРТИИ.
ОПТИМАЛЬНОЕ СИДЕНИЕ
ОПТИМАЛЬНОЕ ФУНКЦИОНИРОВАНИЕ (OPTIMAL FUNCTIONING)
ОПТИМАЛЬНЫЙ И НЕОПТИМАЛЬНЫЙ СМЫСЛ ЖИЗНИ.
Исходя из принципа оптимальности
ОПТИМАЛЬНЫЙ УРОВЕНЬ АКТИВАЦИИ ИЛИ РАССОГЛАСОВАНИЯ
СЕНЗИТИВНЫЕ ИЛИ ОПТИМАЛЬНЫЕ ПЕРИОДЫ
Оптимальная конфигурация жизненных отношений
Экспериментальные манипуляции критериями оптимальности оценочного поведения
4.2. СОВМЕСТНАЯ РАБОТА: КАК ОБЕСПЕЧИТЬ ОПТИМАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ?
МАЛЮКОВА Ф.Р. ФАКТОРЫ ОПТИМАЛЬНОЙ РАБОТЫ САМОСОЗНАНИЯ
ОПТИМАЛЬНЫЙ ВОЗРАСТ ДОСТИЖЕНИЯ ВЫСОКИХ РЕЗУЛЬТАТОВ.
М.Г. Юсупов К ПРОБЛЕМЕ ОПТИМАЛЬНОСТИ ОТНОШЕНИЙ СОСТОЯНИЙ И КОГНИТИВНЫХ ПРОЦЕССОВ СТУДЕНТОВ
ГЛАВА 23. ФОРМИРОВАНИЕ ПОТРЕБНОСТЕЙ В ОПТИМАЛЬНОЙ ДВИГАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ КАК ФАКТОР ЭМОЦИОНАЛЬНОГО ГОМЕОСТАЗА
КЛИНИКО-ПСИХОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ПЕРВОБЕРЕМЕННЫХ ЖЕНЩИН ОПТИМАЛЬНОГО РЕПРОДУКТИВНОГО ВОЗРАСТА В III ТРИМЕСТРЕ БЕРЕМЕННОСТИ
Добавить комментарий