ВЫСОКИЕ СТАТИСТИЧЕСКИЕ ТЕХНОЛОГИИ В ЭКОНОМЕТРИКЕ.

Особый интерес представляют эконометрические применения высоких статистических технологий. Речь идет об их применении для анализа конкретных экономических данных, прежде всего в контроллинге).

Может возникнуть естественный вопрос: зачем нужны высокие статистические технологии, разве недостаточно обычных статистических методов? Исследователи в области эконометрики считают (и доказывают своими теоретическими и прикладными работами), что совершенно недостаточно. Так, многие данные в реальной социально-экономической деятельности, а потому и в информационных системах поддержки принятия решений имеют нечисловой характер, например, являются словами или принимают значения из конечных множеств (выбор происходит из конечного числа градаций). Нечисловой характер имеют и упорядочения, которые дают эксперты или менеджеры, например, выбирая главную цель предприятия, следующую по важности и т.д., сравнивая образцы продукции с целью выбора наиболее подходящего для запуска в серию и др. Значит, для контроллинга нужна статистика нечисловых данных. Далее, многие величины известны не абсолютно точно, а с некоторой погрешностью — лежат в пределах от одной границы до другой. Другими словами, исходные данные — не числа, а интервалы. Это -следствие общеинженерного утверждения: любое измерение проводится с погрешностями. Следовательно, контроллеру нужна статистика интервальных данных. Ниже мы показываем, что мнения людей естественно описывать в терминах теории нечеткости. Значит, контроллеру нужна статистика нечетких данных. Ни статистики нечисловых данных, ни статистики интервальных данных, ни статистики нечетких данных нет и не могло быть в классической статистике. Все это — высокие статистические технологии. Разработанные за последние 10-30 лет, они основаны на последних достижениях прикладной математической статистики. А обычные курсы по общей теории статистики и по классической математической статистике разбирают научные результаты, полученные в первой половине ХХ века.

Важная часть эконометрики — применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по «доводке» статистических технологий применительно к конкретной ситуации. Большое значение для контроллинга имеют не только общие методы, но и конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок или экономики качества, имитационные модели деятельности организации. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистый приведенный доход, внутренняя норма доходности, основанные на учете изменения стоимости денежной единицы во времени (учет осуществляется с помощью дисконтирования). А при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности про необходимость дисконтирования «забывают». Эта ошибочная практика объясняется тем, что основы бухгалтерской науки и практики были заложены во времена отсутствия инфляции.

Бесспорно, что экономисты, менеджеры и инженеры, прежде всего специалисты по контроллингу, должны быть вооружены современными средствами информационной поддержки, в том числе высокими статистическими технологиями и эконометрикой. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Один раз — в 1990-1992 гг. отечественные специалисты по эконометрике уже обожглись на недооценке необходимости предварительной подготовки тех, для кого предназначены современные компьютерные средства. Всесоюзной статистической ассоциацией и Всесоюзным центром статистических методов и информатики Центрального правления Всесоюзного экономического общества была разработана система диалоговых программных систем обеспечения качества продукции. Их созданием руководили ведущие специалисты страны. Но распространение шло на 1-2 порядка медленнее, чем ожидалось (единицы и десятки продаж вместо сотен и тысяч). Причина стала ясна не сразу. Как оказалось, работники предприятий просто не понимали возможностей разработанных систем, не знали, какие задачи можно решать с их помощью, какой экономический эффект они дадут. А не понимали и не знали потому, что в вузах и после вузов никто их не учил статистическим методам управления качеством. Без такого систематического обучения нельзя обойтись — сложные концепции «на пальцах» за пять минут не объяснишь.

Есть и противоположный пример — положительный. В середине 1980-х годов в советской средней школе ввели новый предмет «Информатика». И сейчас молодое поколение превосходно владеет компьютерами, мгновенно осваивая быстро появляющиеся новинки, и этим заметно отличается от тех, кому за 30-40 лет. Если бы удалось ввести в средней школе курс вероятности и статистики — а такой курс есть в Японии и США, Швейцарии, Кении и Ботсване, почти во всех странах мира (см. подготовленный ЮНЕСКО сборник докладов ) — то ситуация могла бы быть резко улучшена. Надо, конечно, добиться, чтобы такой курс был построен на высоких эконометрических (статистических) технологиях, а не на низких. Другими словами, он должен отражать современные достижения, а не концепции пятидесятилетней или столетней давности.

Вполне закономерно, что в деятельности российского объединения профессионалов в области контроллинга — «Общества контроллеров» — выделено направление, посвященное применению высоких статистических технологий и эконометрики в контроллинге, а также обучению основам этого направления при подготовке и переподготовке контроллеров.

Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них — это результаты измерений различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой — это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это — субъективная информация. Стабильная экономическая ситуация позволяет рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях. В подобных условиях данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки.

Такая новейшая часть эконометрики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок.

Для решения каких экономических задач может быть полезна эконометрика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, эконометрика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на эконометрике. Но планирование и контроль — основа контроллинга [4, 5]. Поэтому эконометрика — важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные эконометрические модели. В производственном менеджменте это может означать, например, использование оптимизационных эконометрических моделей типа тех, что применяются при экстремальном планировании эксперимента (они позволяют повысить выход полезного продукта на 30-300%).

Высокие статистические технологии в эконометрике предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки — надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он — надежный или ненадежный, а также оценивать его надежность численно, т.е. вычислять значение рейтинга.

Один из способов построения адаптивных эконометрических моделей — нейронные сети. При этом упор делается не на формулировку адаптивных алгоритмов анализа данных, а — в большинстве случаев — на построение виртуальной адаптивной структуры. Термин «виртуальная» означает, что «нейронная сеть» — это специализированная компьютерная программа, «нейроны» используются лишь при общении человека с компьютером. Методология нейронных сетей идет от идей кибернетики 1940-х годов. В компьютере создается модель мозга человека (весьма примитивная с точки зрения физиолога). Основа модели — весьма простые базовые элементы, называемые нейронами. Они соединены между собой, так что нейронные сети можно сравнить с хорошо знакомыми экономистам и инженерам блок-схемами. Каждый нейрон находится в одном из заданного множества состояний. Он получает импульсы от соседей по сети, изменяет свое состояние и сам рассылает импульсы. В результате состояние множества нейтронов изменяется, что соответствует проведению эконометрических вычислений.

Нейроны обычно объединяются в слои (как правило, два-три). Среди них выделяются входной и выходной слои. Перед началом решения той или иной задачи производится настройка. Во-первых, устанавливаются связи между нейронами, соответствующие решаемой задаче. Во-вторых, проводится обучение, т.е. через нейронную сеть пропускаются обучающие выборки, для элементов которых требуемые результаты расчетов известны. Затем параметры сети модифицируются так, чтобы получить максимальное соответствие выходных значений заданным величинам.

С точки зрения точности расчетов (и оптимальности в том или ином эконометрическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными эконометрическими системами. Однако они более просты для восприятия. Надо отметить, что в эконометрике используются и модели, промежуточные между нейронными сетями и «обычными» системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей экономических факторов ЖОК.

Заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости (по-английски — fuzzy theory, причем термин fuzzy переводят на русский язык по-разному: нечеткий, размытый, расплывчатый, туманный, пушистый и др.). Начало современной теории нечеткости положено работой Л.А.Заде 1965г., хотя истоки прослеживаются со времен Древней Греции [3,7] Это направление прикладной математики получило бурное развитие. К настоящему времени по теории нечеткости опубликованы тысячи книг и статей, издается несколько международных журналов (больше половины — в Китае и Японии), постоянно проводятся международные конференции. В области теории нечеткости выполнено достаточно много как теоретических, так и прикладных научных работ, практические приложения дали ощутимый технико-экономический эффект.

Основоположник рассматриваемого научного направления Лотфи А. Заде рассматривал теорию нечетких множеств как аппарат анализа и моделирования гуманистических систем, т.е. систем, в которых участвует человек. Его подход опирается на предпосылку о том, что элементами мышления человека являются не числа, а элементы некоторых нечетких множеств или классов объектов, для которых переход от «принадлежности» к «непринадлежности» не скачкообразен, а непрерывен. В настоящее время методы теории нечеткости используются почти во всех прикладных областях, в том числе при управлении качеством продукции и технологическими процессами.

Нечеткая математика и логика — мощный элегантный инструмент современной науки, который на Западе и на Востоке (в Японии, Китае) можно встретить в программном обеспечении десятков видов изделий — от бытовых видеокамер до систем управления вооружениями. В России он был известен с начала 1970-х годов. Однако первая монография российского автора по теории нечеткости была опубликована лишь в 1980 г. В дальнейшем раз в год всесоюзные конференции собирали около 100 участников — по мировым меркам немного.

При изложении теории нечетких множеств обычно не подчеркивается связь с вероятностными моделями. В нашей стране в середине 1970-х годов установлено [3,7], что теория нечеткости в определенном смысле сводится к теории случайных множеств, хотя эта связь и имеет, возможно, лишь теоретическое значение. В США подобные работы появились лет на пять позже.

Профессионалу в области контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике.

Январь 24, 2019 Психология труда, инженерная психология, эргономика
Еще по теме
ПОТРЕБИТЕЛЬСКАЯ КОРЗИНА ИНСТИТУТА ВЫСОКИХ СТАТИСТИЧЕСКИХ ТЕХНОЛОГИЙ И ЭКОНОМЕТРИКИ.
КАК УСКОРИТЬ ВНЕДРЕНИЕ "ВЫСОКИХ ЭКОНОМЕТРИЧЕСКИХ (СТАТИСТИЧЕСКИХ) ТЕХНОЛОГИЙ"?
ТЕРМИН "ВЫСОКИЕ ЭКОНОМЕТРИЧЕСКИЕ (В БОЛЕЕ ОБЩЕЙ СИТУАЦИИ - СТАТИСТИЧЕСКИЕ) ТЕХНОЛОГИИ".
ВЫСОКИЕ ЭКОНОМЕТРИЧЕСКИЕ ТЕХНОЛОГИИ И ИХ ВОЗМОЖНОСТИ ДЛЯ РЕШЕНИЯ ЗАДАЧ УПРАВЛЕНИЯ И КОНТРОЛЛИНГА.
ПОЧЕМУ ЖИВУЧИ "НИЗКИЕ ЭКОНОМЕТРИЧЕСКИЕ (СТАТИСТИЧЕСКИЕ) ТЕХНОЛОГИИ"?
ЧТО ТАКОЕ ЭКОНОМЕТРИКА?
ЭКСПЕРТНЫЕ ОЦЕНКИ - ЧАСТЬ СОВРЕМЕННОЙ ЭКОНОМЕТРИКИ.
ПОЧЕМУ СТАРЫЕ МЕТОДЫ ЭКОНОМЕТРИКИ НЕ ПОДХОДЯТ ДЛЯ НОВЫХ УСЛОВИЙ?
О СУЩНОСТИ ВЫСОКИХ ЭКОНОМЕТРИЧЕСКИХ МЕТОДОВ.
ВЫСОКАЯ ОЦЕНКА
КРАТКАЯ БОЛЬ — ВЫСОКАЯ РОЛЬ
1. Высокая активность самого клиента.
ОСОБЕННОСТИ ЛИЧНОСТИ СПОРТСМЕНА ВЫСОКОЙ КВАЛИФИКАЦИИ
Добавить комментарий